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ABSTRACT
Shape models (SMs), capturing the common features of a set
of training shapes, represent a new incoming object based
on its projection onto the corresponding model. Given a set
of learned SMs representing different objects, and an image
with a new shape, this work introduces a joint classification-
segmentation framework with a twofold goal. First, to auto-
matically select the SM that best represents the object, and
second, to accurately segment the image taking into account
both the image information and the features and variations
learned from the on-line selected model. A new energy func-
tional is introduced that simultaneously accomplishes both
goals. Model selection is performed based on a shape simi-
larity measure, determining which model to use at each itera-
tion of the steepest descent minimization, allowing for model
switching and adaptation to the data. High-order SMs are
used in order to deal with very similar object classes and natu-
ral variability within them. The presentation of the framework
is complemented with examples for the difficult task of simul-
taneously classifying and segmenting closely related shapes,
stages of human activities, in images with severe occlusions.

Index Terms— Shape priors, image segmentation, object
modeling.

1. INTRODUCTION

Object segmentation is one of the most fundamental tasks in
image processing, still lacking a completely automatic solu-
tion. The main idea is to find a set of features that describes
and discriminates the object of interest from the rest of the
image. Pixel color is a low level feature that can be used as
such descriptor, although its discrimination capacity is often
insufficient in real images. Using shape as a high level feature
is a common approach to augment such low level features.

The shape of the desired object is added as a descriptor,
constraining the set of possible solutions to regions of the im-
age that simulatenously “match” this shape and the low level
features (intensity, edges, etc.). The most common way to
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add this shape prior information is in the form of a weighted
linear combination of functionals concerning, on one hand,
the low level features and, on the other hand, the shape pri-
ors. This leads to a minimization problem where the so-
lution is a compromise between the shape of the final con-
tour and the information constrained by the image. The ac-
tual minimization techniques vary, including gradient descent
methods [1, 2, 3, 4, 5] and graph-cuts [6]. The used shape
representations also vary, including signed distance functions
(SDF) [1, 2, 3, 6, 5], quadratic splines [7], characteristic func-
tions [4], and landmark points [8].

When M different objects can appear in an image, a sin-
gle shape prior (model) is not sufficient, and multiple shape
priors must be considered. A possible, but not elegant, ap-
proach is to run the process with each one of the shape priors
separately, and then choose the best solution. In [5, 6] the
authors define M possible labels for each pixel on the im-
age, and a segmentation energy includes the optimization of
these labels in order to determine where to apply each prior.
In [7] the authors perform density estimation in a non-linear
feature space, where different objects are separable. The pro-
posed energy is then minimized considering both the curve’s
control points and the image.

Considering the natural deformations and the variability
of objects in a class, high-order shape models (SMs) should
be included in the segmentation. Leventon et al. [1] compute
PCA on a set of registered shapes (see also Tsai et al. [3]),
fitting a Gaussian probability distribution to the coefficients
of the reconstruction. This allows to compute the probabil-
ity of a certain shape, included along with geodesic active
contours for low level features, in an MAP estimation of the
object in the image. Cootes and Taylor [8] compute, using
PCA, a point distribution model of landmarks points defin-
ing a shape. More recently, Charpiat et al. [4] proposed a
framework to compute non-linear shape statistics based on
the Hausdorff distance between shapes, and then model dis-
tributions similarly to [1].

In this work, a new framework for image segmentation
with multiple high-order shape models is introduced, address-
ing at the same time the selection of the model and its image-
driven adjustment to the modeled deformations. In particu-



Fig. 1. (a) Each point correspond to the first three coordinates of the mapping obtained with diffusion maps, [9], for the shapes of a walking
person. Clustering into five groups and one sample shape from each cluster (walking-cycle position) are shown. (b) Four shapes from two
different clusters (one in blue and one in red). (c) Original shape (in blue) and its projections Pkφ (in black) to M = 5 different models in
the walking sequence, one for each cluster. Note how the projection is completely deformed when using the wrong model. (d) First three
modes of variation for one of the models in the walking sequence; the thick black line is the mean shape, the red lines are obtained varying
the amplitude (each figure is then the addition of the average and a constant times the first, second, or third eigenmode respectively).

lar, the high-order SMs are computed using PCA in a similar
way as [1, 3], obtaining a set of eigenmodes of variations.
The selection of the model is obtained with a binary selection
coefficient, on-line learned based on a shape similarity mea-
sure between shapes. The proposed functional combines two
terms, the first one is a region-based segmentation term [10].
The second term is a combination of the multiple high-order
SMs, addressing the model selection and constraining the lo-
cal features to the high-order shape information coming from
the on-line selected model. While the framework is presented
for planar curves, it can be easily extended to data in higher
dimensions.

2. HIGH-ORDER SHAPES MODELS

Consider M sets Φk, k = 1, . . . ,M , each with Nk registered
shapes Φk = {φ1

k, . . . , φ
Nk

k }, where each φjk ∈ RD is a SDF,
whose zero level-set curve, Cjk, represents a shape from the
k-th class of objects. The shape deformations in the set Φk
are relatively small (compared with the deformations across
different classes k). LetMd

k be a d-order model that captures
the intrinsic deformations of the training set Φk for the class
k. A modelMd

k generates a representation of a new incoming
shape φ̂, whose accuracy depends on the similarity between
φ̂ and the shapes in Φk. In this work, Md

k is derived from
a PCA decomposition, and φ̂’s representation is given by the
d-projection Pdk φ̂, Pdk φ̂ = µk +Udkαk, where µk ∈ RD is the
mean shape of Φk, Udk ∈ RD×d is a matrix containing the first
d modes of variation (eigenmodes), and αk ∈ Rd are the cor-
responding reconstruction coefficients, which of course de-
pend on φ̂ (see [1, section 2.1] for details). Constraining small
shape variations in the class Φk allows to obtain accurate rep-
resentations using a linear approximation like PCA. If a class
has large, non-linear deformation, a set of clusters may be
considered, and the deformations in each cluster are linearly
approximated. Finally, let M = {M1, . . . ,MM} be a set of
SMs for the M different classes of objects (for simplicity, we
omit the order d in the notation from now on). Figure 1 shows
SMs for a walking person.

3. PROPOSED FRAMEWORK

Given an input image I : Ω ⊂ R2 → R containing one
or more shapes generated by the shape models Mk ∈ M,
an energy E is defined to simultaneously select the best
model(s) and obtain a segmentation of the corresponding ob-
jects in I (a single object is considered now for simplicity),
(M∗, φ∗) := arg minM,φE(I, φ, c0, c1,M). This energy
includes two terms linearly combined with the constant λ,
E(I, φ, c0, c1,M) = ECV(I, φ, c0, c1) + λESM(φ,M).

ECV is the energy introduced in [10], splitting the input
data into two different regions of approximately piecewise
constant values (c0 and c1). The term ESM adds an additional
force aiming at maximizing the similarity between the evolv-
ing shape φ and its projection onto only one of the d-order
models from M. Which one of the M models is used de-
pends on the evolution of the shape and its projection to each
model. The proposed term is

ESM(φ,M) =
M∑
k=1

βk

∫
Ω

‖H(φ(p))−H(Pkφ(p))‖2 dp, (1)

where H is the Heaviside function, βk is a binary coefficient
that (on-line) selects which of theM models is used, and Pkφ
is the projection of φ to this model Mk. Only one of the
βk must be different from zero in (1), since it is not fair to
penalize for models that do not correspond to the object in
the image. Which is the non-zero βk is computed based on a
shape dissimilarity measure (Υ) between two shapes,

Υ(φ1, φ2)=
∫

Ω

[
|φ1(p)|δ(φ2(p))

length(C2)
+
|φ2(p)|δ(φ1(p))

length(C1)

]
dp. (2)

This is a length-normalized variation of the measure intro-
duced in [11]. This measure evaluates the sum of Euclidean
distances corresponding to moving the contour of the first
shape to points in the contour of the second shape, and vicev-
ersa, scaled by the curves lengths. In Figure 1(c), the pro-
jected shapes are ordered according to increasing values of
Υk(φ) := Υ(φ,Pkφ) (1.35, 2.83, 3.59, 5.87, and 7.83 re-
spectively).



Fig. 2. (a) Mode of variation for the two ellipses models (M1
V in green andM1

H in red), the mean shape of both models is the same and is
plotted in black dash line. (b) Results for experiments withM1

H andM0
V (only mean shape). Some steps in the segmentation (see text) and

the evolution of the shape dissimilarity measure are also shown. (c) Same for experiments withM1
H andM1

V (complete model).

Based on (2), a normalized shape similarity measure
ξ̄k(φ) between a shape φ and its projection Pkφ to the d-
order k-th model is computed as ξ̄k(φ) = ξk(φ)PM

l=1 ξl(φ)
, where

ξk(φ) = exp (−Υk(φ)). This normalized similarity measure
ξ̄k(φ) is close to one for the model that better represents φ.
Finally to force the binary value in βk soft thresholding, based
on a sigmoid function, is performed. Note that a unique co-
efficient is used as model selector, instead of one coefficient
in each pixel as in [5, 6]. This encourages shape consistency
and significantly simplifies the optimization.

Shape validation. With the proposed method, one model
is always selected and a segmentation is obtained, even if the
shape in the image has no appropriate model that provides
a good representation. The following measure permits to
discard a segmentation φf given the model selected. First,
the mean Ῡk and variance σ2

Υk
of Υ(φjk, µk) are computed,

∀φjk ∈ Φk. Then if Υ(φf , µk) > Ῡk + 2σ2
Υk

, the segmenta-
tion is discarded, and the shape can not be recognized.

Energy minimization. The proposed energy is mini-
mized using a classical gradient descent method. For the
gradient descent of ECV, the expression is given in [10, Equa-
tion (9)]. For ESM, the obtained expression is

∂ESM

∂φ
=−2

M∑
k=1

βk
∥∥H(φ)−H(Pkφ)

∥∥(δ(φ)− δ(Pkφ)W
)
,

where W = UkU
T
k . Although the model selector βk depends

of φ, is treated as static, as a first order approximation for the
gradient descent, since it affects the model selection and only
indirectly the evolution of the curve.

The first steps of the optimization are performed with λ =
0, until stationarity, then ESM is added with λ 6= 0 (manually
obtained) until a new stationary point is reached (a similar
idea is considered in [6]).

4. EXPERIMENTAL RESULTS

The first example is a “toy example” with two models of el-
lipses, where the only difference is that the first (and only)
eigenmode is rotated π

2 (this already exemplifies the impor-
tance of high-order models). Let us nameM1

V the model with
vertical deformations andM1

H the one with horizontal ones.
Figure 2(a) shows the mode of variation for both models. The
input image contains an occluded vertical ellipse, not present
in the training set. Two different experiments are presented,
varying the order d of the model Md

V. With d = 0, only
the mean shape is considered in the shape prior (no deforma-
tions), with d = 1 the vertical deformations are considered.
All the parameters are the same in both experiments. Fig-
ures 2(b) and 2(c) show some steps in the minimization and
the evolution of the shape dissimilarity measure, for both ex-
periments, respectively. Steps À and Ä show an intermediate
curve in the evolution with λ = 0, and the projections, P1

Hφ
and PdVφ, to both models, dashed colored lines. The initial
curve (in yellow) is also shown. Note that P0

Vφ has no verti-
cal deformations. The following steps (Á,Â and Å,Æ) show
the evolution after adding the ESM term (λ = 1.1), and the
obtained segmentation (Ã and Ç).

In the first experiment, the projections to both models end
in the same shape (the mean shape), reflected in the graph of
dissimilarity measure by the overlapping of the green and red
curves. In the second experiment,M1

V captures the variation
of the input shape, as reflected in the obtained segmentation.
In this case there is also a model switching around step 200
(step Å), where theM1

H is selected while the occlusions are
being filled. After this point, the vertical deformation deter-
mines the selection ofM1

V for the rest of the evolution, ending
with an accurate segmentation.

For the next experiments, five models of a walking per-
son cycle,M21

Wk (k ∈ [1, 5], d = 21), shown in Figure 1, are
used. This set of models is particularly challenging since they
are different deformations of the “same object.” Five new oc-



Fig. 3. Segmentation with walking model. See text for details.

cluded shapes φ̂k, each one belonging to a different model and
not in Φk, are segmented, Figure 3. In each case the correct
model is selected and the segmented shape is adjusted to the
gray levels, when present, and correctly completes the occlu-
sions when the image information is missing, Figure 3(a) (in
all the cases, the segmentations were validated with the pro-
posed measure). Figure 3(b) plots the evolution of the shape
dissimilarity measure for φ̂2. Note that when the shape prior
is added (λ = 1.02), ΥW2(φ) decreases faster than the others.
The abrupt decay around step 120 corresponds to the filling
of the main occlusion. Figure 3(c) shows φ̂2 with the curve
at the step when the shape prior is added, and the projections
of φ (blue curve) to the five models, coded with colors. Fi-
nally, Figure 3(d) shows the segmentation obtained with our
framework for gray level images. In this case, the automati-
cally selected models, as well as the obtained segmentations,
are correct and accurate.

Additional results, including the automatic classification
and segmentation of multiple objects, generated from a stan-
dard dataset of fish, in noisy images, are presented at the con-
ference.

5. CONCLUDING REMARKS

A framework for simultaneous and automatic model selection
and object segmentation was introduced in this paper. The
proposed technique is based on a new energy that combines
region based segmentation with on-line selection of the best
model for the object present in the image.

Possible directions for further improvements include
incorporating high-order modes in the validation step and
considering going beyond PCA, as well as including class-
dependent model orders (dk). Results in these directions will
be reported elsewhere.
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